Cutaneous squamous cell carcinoma of the head and neck with parotid gland metastasis mimicking mucoepidermoid carcinoma: a potential diagnostic pitfall

Ming-Yueh Liu¹, Cheng-Hsiang Lo¹, Yi-Shu Liao², Hsing-Lung Chao¹, Kuen-Tze Lin¹, Wen-Yen Huang¹, Po-Chien Shen¹, Chih-Cheng Tao¹, Chang-Ming Chen¹, Chun-Shu Lin¹,³

¹Department of Radiation Oncology, ²Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; ³Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

Correspondence to: Dr. Chun-Shu Lin. Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec 2, Cheng-Gong Rd, Neihu, Taipei 114, Taiwan. Email: chunshulin@gmail.com.

Abstract: We present an atypical case of cutaneous head and neck squamous cell carcinoma (cHNSCC), with parotid gland metastasis. This 56-year-old female presented with a slowly enlarging mass at the left pre-auricular region over the past year. At first, the patient described that there was only a bulging mass without apparent skin lesion or skin defect and it grew slowly. A magnetic resonance imaging (MRI) demonstrated a large lobulated lesion measuring 51 mm × 55 mm × 56 mm within the left parotid gland, which had invaded the ipsilateral masseter muscle causing displacement of the left lateral pterygoid muscle. The diagnostic radiologist made a provisional diagnosis of mucoepidermoid carcinoma (MEC) based on the finding of MRI. The patient then received left total parotidectomy with ipsilateral supraomohyoid neck dissection. The diagnosis later revised to cHNSCC with parotid lymph node metastasis based on pathological findings. cHNSCC may present solely as parotid tumor without apparent skin lesion which might also mimic primary MEC of the parotid gland.

Keywords: Skin cancer; squamous cell carcinoma; mucoepidermoid carcinoma (MEC); parotid gland metastasis

Introduction

Parotid tumors affected 1:100,000 people with the highest incidence found in Northern Queensland, Australia (1). About 75% of the parotid masses are benign and among them, pleomorphic adenoma accounted for the majority. On the other hand, primary parotid cancer is rather uncommon, representing only 2–3% of all head and neck malignancy (2,3). The most frequently encountered primary malignancy is mucoepidermoid carcinoma (MEC). Parotid gland metastasis is rare on the contrary. The most common site of origin is the skin of the cutaneous head and neck squamous cell carcinoma (cHNSCC), and it develops in 1–3% of patients (4). In the report, we present an unusual case of the parotid gland metastasis from cHNSCC, and the patient did not have the apparent skin lesion on the surface, radiological findings mimicked that of primary MEC. Special attention should be paid to the potential cause of diagnostic pitfalls.

Case report

This is a 56-year-old female who presented with a mass at the left pre-auricular region that slowly enlarged during the previous one year. At first, there was only a bulging mass without apparent skin lesion or skin defect. Because it was asymptomatic, the patient paid no attention to it. However, progressive left-sided facial palsy and numbness developed in 1 month before this admission. A firm mass of the left parotid gland was 4 cm in diameter on palpation (Figure 1). The severity of facial palsy was grade VI according to
House-Brackmann Facial Nerve Grading System (4-6). Magnetic resonance images revealed a large lobulated mass measuring 51 mm × 55 mm × 56 mm within the left parotid gland, which invaded the ipsilateral masseter muscle and compressed the left lateral pterygoid muscle (Figure 2). Our experienced diagnostic radiologist made a provisional diagnosis of MEC. Other image studies showed no evidence of distant metastasis. The patient received left total parotidectomy with ipsilateral supraomohyoid neck dissection.

Discussion

There are at least 20 subtypes of histology of primary major salivary gland tumor and around 5% of primary major...
Salivary gland tumors are squamous cell carcinoma (7). The primary SCC of the parotid gland is a diagnosis by exclusion. According to Tanvetyanon et al. stated the pathological finding of the primary SCC when arises in the salivary gland frequently replaces the whole glands and the small remnants of metaplastic ducts or degenerating acini within desmoplastic fibrotic background are always identified (7). Thus, the final diagnosis of this patient is regarded as metastatic SCC of the head and neck skin. In generally, cHNSCC constitutes about 20–25% of all skin cancer and is known to have a higher incidence of local-regional involvement (5). A systematic analysis, that carries out recently suggested that the risk of nodal metastasis for cHNSCC is about 5% and among them, the parotid gland nodes are most frequently involved (60–70%) (2). Risk factors for nodal involvement in cHNSCC include tumor size larger than 2cm, thickness over than 4mm, presence of lymphovascular invasion (LVSI), perineural invasion (PNI) or an immunocompromising condition.

PNI are identified in 3.7–6% of cHNSCC patients with the trigeminal nerve (CN V) and the facial nerve (CN VII) being the most commonly involved (8,9). The typical symptoms for patients with PNI are numbness, pain, or paresthesia (9). The incidence of partial or complete facial nerve sacrifice was varies from 5% to 43% in cHNSCC, who underwent complete or partial parotidectomy. Patients with malignant facial nerve palsy or facial nerve invasion often have a poor prognosis (10). In our reported case, the patient had the clinical symptoms of malignant left-sided facial nerve palsy, which could be explained by our pathological finding of PNI.

Two different staging systems has proposed for cHNSCC: the American Joint Committee on Cancer (AJCC) TNM and the O’Brien staging systems. The AJCC TNM system has criticized as an inadequate staging approach for skin cancer because of its inability to discriminate between the number, size, and location of nodes. In TNM systems, parotid and cervical nodes had categorized into the same regional group. By contrast, O’Brien et al. suggested a staging system that separates node involvement into P (parotid node) and N (cervical node) stages respectively (Table 1) (10). The patient presented cutaneous hand and neck cancer with parotid gland involvement and parotid gland metastasis, thus, the O’Brien staging system might be more suitable for this patient.

Recent publications recommended medically operable patients to receive surgery followed by postoperative RT (4-6). A retrospective study by Veness et al. demonstrated that surgery and adjuvant radiotherapy provide a lower loco-regional recurrence and better 5-year disease-free survival in cHNSCC patients with metastasis to the lymph nodes (5). Most recent studies suggested a regimen of adjuvant radiotherapy of 60 Gy to nodal region that has already been dissected and 50 Gy to the at-risk nodal area which has not been dissected (5).

Therefore, under the highly conformal radiotherapy, the identification and delineation of the clinical target volumes (CTVs) for regions at risk is the most importance. Eisbruch et al. reported guidelines for CTV delineation in the treatment of cHNSCC with PNI based on their systematic analysis of patterns of disease progression and treatment failures. Auriculo-temporal nerve and the greater superficial petrosal nerve (GSPN) are the communicating branches between the terminal branches of CN V and CN VII. The CTV for conformal RT should include CN V and VII due to high risk for primary tumor involvement (8).

Only few sparse studies have compared the prognosis for patients who received adjuvant chemoradiation to patients who received adjuvant radiation for cHNSCC. Tanvetyanon et al. reported that adjuvant concurrent chemoradiation was associated with a reduced regional progression and an improved recurrence-free survival in advanced, high-risk patients (7). Hinerman et al. recommended that chemoradiation should be used in selected patients with positive margins and/or extensive nodal disease due to poor prognosis (4). In accordance with the results of the studies mentioned above, this patient received adjuvant radiotherapy.
Patients with operable cHNSCC best treated by surgery and adjuvant radiotherapy. If the patient was diagnosed to have cHNSCC with parotid metastasis and PNI, the CTV for adjuvant radiotherapy should include the entire involved nerve. For those patients with high risk of relapse, the more intensive treatment such as the concurrent use of chemotherapy to adjuvant radiotherapy should be recommended.

Acknowledgements

None.
Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

doi: 10.21037/tro.2018.03.01